The Generalised Treynor Ratio

Georges Hübner
Department of Management, University of Liège
Associate Professor, EDHEC Business School
Abstract
This paper presents a generalisation of the Treynor ratio in a multi-index setup. The solution proposed in this paper is the simplest measure that keeps Treynor’s original interpretation of the ratio of abnormal excess return (Jensen’s alpha) to systematic risk exposure (the beta) and preserves the same key geometric and analytical properties as the original single index measure. The Generalised Treynor ratio is defined as the abnormal return of a portfolio per unit of weighted-average systematic risk, the weight of each risk loading being the value of the corresponding risk premium. The empirical illustration uses a sample of funds with different styles. It tends to show that this new portfolio performance measure, although it yields more dispersed values than Jensen’s alphas, is more robust to a change in asset pricing specification or a change in benchmark.

I would like to thank Peter Schotman, Wayne Ferson, Pascal François and the participants of the 2003 International AFFI Conference, Lyon, and the 2003 Annual Meeting of the Northern Finance Association, Québec, for helpful comments. I wish to thank Deloitte and Touche (Luxemburg) for financial support.

EDHEC is one of the top five business schools in France. Its reputation is built on the high quality of its faculty and the privileged relationship with professionals that the school has cultivated since its establishment in 1906. EDHEC Business School has decided to draw on its extensive knowledge of the professional environment and has therefore focused its research on themes that satisfy the needs of professionals.

EDHEC pursues an active research policy in the field of finance. EDHEC-Risk Institute carries out numerous research programmes in the areas of asset allocation and risk management in both the traditional and alternative investment universes.
After the publication of the Capital Asset Pricing Model developed by Treynor (1961), Sharpe (1964), Lintner (1965) and Mossin (1966), the issue of the assessment of risk-adjusted performance of portfolios was quickly recognised as a crucial extension of the model. It would provide adequate tools to evaluate the ability of portfolio managers to realise returns in excess of a benchmark portfolio with similar risk. Consequently, four simple measures were proposed and adopted in the financial literature: The Sharpe (1966) ratio and the Treynor and Black (1973) “appraisal ratio” both use the Capital Market Line as the risk-return referential, using variance or standard deviation of portfolio returns as the measure of risk, whereas the Treynor (1966) ratio and Jensen’s (1968) alpha directly relate to the beta of the portfolio using the Security Market Line. The evolution of quantitative performance assessment for single index models produced few new widely accepted measures. Fama (1972) proposed a useful decomposition of performance between timing and selection abilities, while Treynor and Mazuy (1966) and Henriksson and Merton (1981) designed performance measures aiming at measuring market timing abilities. More recently, Modigliani and Modigliani (1997) proposed an alternative measure of risk that also uses the volatility of returns in the context of the CAPM.

There exist some extensions of these performance measures to multi-index model. In the context of the Ross (1976) Arbitrage Pricing Theory, Connor and Korajczyk (1986) develop multi-factor counterparts of the Jensen (1968) and Treynor and Black (1973) measures, while Sharpe (1992, 1994) provides conditions under which the Sharpe ratio can be extended to the presence of several risk premia. Nowadays, most performance studies of multi-index asset pricing models use Jensen’s (1968) alpha. Its interpretation as the risk-adjusted abnormal return of a portfolio makes it flexible enough to be used in most asset pricing specifications. As a matter of fact, in their comprehensive study, Kothari and Warner (2001) only consider this measure for multi-index asset pricing models in their empirical comparison of mutual funds performance measures. Obviously, the lack of a multi-index counterpart of the Treynor ratio represents a gap in the financial literature and in business practice, as it would enable analysts to relate the level of abnormal returns to the systematic risk taken by the portfolio manager in order to achieve it.

This article aims to fill this gap. It presents a generalisation of the Treynor ratio in a multi-index setup. To be a proper generalised measure, it has to conserve the same key economic and mathematical properties as the original single index measure, and also to ease comparison of portfolios across asset pricing models. The solution proposed in this paper is the simplest measure that meets these requirements while still keeping Treynor’s original economic interpretation of the ratio of abnormal excess return (Jensen’s alpha) to systematic risk exposure (the beta). The second part of this paper uses a sample of mutual funds to assess whether, beyond its higher level of theoretical accuracy, the Generalised Treynor ratio can be considered as a more reliable measure than Jensen’s alpha, by evaluating the robustness of its performance ratings and rankings to a change in the asset pricing specification or of benchmark portfolio.

The classic Treynor Performance Ratio

The Treynor ratio uses as the Security Market Line, that relates the expected total return of every traded security or portfolio i to the one of the market portfolio m:

$$E(R_i) = R_f + \beta_i [E(R_m) - R_f] \tag{1}$$

where $E(R)$ denotes the unconditional continuous expected return, R_f denotes the continuous return on the risk-free security and

$$\beta_i = \frac{\text{cov}(R_i, R_m)}{\sigma^2(R_m)}$$

is the beta of security i.
This equilibrium relationship corresponds to the market model:

\[r_i = \alpha_i + \beta_i R_m + \varepsilon_i \]

(2)

where \(r_i = R_i - R_f \) denotes the excess return on security \(i \). If the CAPM holds and if markets are efficient, \(\alpha_i \) should not be statistically different from 0.

When considered in the context of portfolio management, the econometric specification of equation (2) translates into an ex-post measure of excess return:

\[\bar{r}_i = \alpha_i + \beta_i \bar{r}_m \]

(3)

where \(\bar{r}_i = \frac{1}{n} \sum_{t=1}^{T} r_{it} \) is the average return of the security over the sample period (0,T) and the econometric methodology leading from (2) to (3) ensures that \(\bar{e}_i = 0 \).

Equation (2) constitutes the source of two major performance measures of financial portfolios; Jensen's alpha (1968) and the Treynor ratio (1966). Jensen's alpha is just \(\alpha_i \) in equation (3): it is the percentage excess return earned by the portfolio in addition to the required average return over the period. This is an absolute performance measure – it is measured in the same units as the return itself – after controlling for risk.

The Treynor ratio can either be defined as the Total Treynor ratio (TT), as usually treated in the literature, or the Excess Treynor ratio (ET) that is directly related to abnormal performance. The equations for these two ratios are the following:

\[TT_i = \frac{\bar{r}_i}{\beta_i} \]

(4)

\[ET_i = \frac{\alpha_i}{\beta_i} = TT_i - \bar{r}_m \]

(5)

These two measures are roughly equivalent. Nevertheless, the link between the Excess Treynor ratio and Jensen's alpha is easier to interpret: the Excess Treynor ratio is just the equal to the alpha per unit of systematic risk of the portfolio. In particular, this formulation corresponds to the original measure developed by Treynor (1966). Thus, this paper will proceed from now on with the Excess Treynor ratio.

It immediately appears that, in this simple classical setup, the Treynor ratio provides additional information with respect to Jensen's alpha: two securities with different risk levels that provide the same excess returns over the same period will have the same alpha but will differ with respect to the Treynor ratio. The improvement comes from the fact that the Treynor ratio provides the performance of the portfolio per unit of systematic risk.

From this univariate setup, five key features of the Treynor ratio may be emphasised, provided that systematic risk is positive in all cases:

• **Ratio of distances**: The Treynor ratio is a slope measure, i.e. the ratio of a Euclidian norm in the returns space to a Euclidian norm in the risk space:

\[ET_i = \frac{D(0,\alpha_i)}{D(0,\beta_i)} \]

where \(D(.,.) \) denotes the Euclidian distance operator.

• **Monotonicity with risk**: If a portfolio is riskier than another and both have the same alpha, then the riskier portfolio has the lower Treynor ratio: \(\forall i, i' \text{ such that } \beta_i > \text{ (resp. } <, =) \beta_i' \text{ and } \alpha_i = \alpha_{i'} \Leftrightarrow ET_i < \text{ (resp. } >, =) ET_i' \).
• **Benchmarking:** A portfolio \(m \) is taken as a benchmark and the Treynor ratio of every portfolio with the same beta as the benchmark is equal to its alpha: \(\forall i \) such that \(\beta_i = \beta_m = 1, ET_i = \alpha_i \).

• **Cross-sectional independence:** All portfolios whose required return is similar obtain the same ranking as the one given by their alpha: \(\forall i, i' \) such that \(\beta_i = \beta_{i'} \), \(ET_i > (\text{resp. } <, =) ET_{i'} \iff \alpha_i > (\text{resp. } <, =) \alpha_{i'} \).

• **Scale independence:** If the scale of the risk premium is changed from one market, benchmark or period to another, then the Treynor ratio is unchanged: for any two periods where \(\tilde{r}_i \) is measured at the same time as \(\tilde{r}_m \) and \(\tilde{r}_m^* \) is measured at the same time as \(\tilde{r}_m^* \) such that \(\beta_i = \beta_i^* \) and \(\bar{r}_m = k\tilde{r}_m^*, k \in \mathbb{R}^+ \), then \(ET_i (\text{resp. } <, =) ET_i^* \iff \alpha_i (\text{resp. } <, =) \alpha_i^* \).

The interpretation of these properties is rather natural. The “ratio of distances” property comes from the very definition of the Treynor ratio and allows to provide an economic justification. Monotonicity reflects the basic improvement of the Treynor ratio with respect to Jensen's alpha. The other three properties ensure that there is no other dimension than risk impacted by the Treynor ratio, i.e. that this ratio provides similar results to the alpha for other relevant aspects. Benchmarking sets a reference value for the performance measure. Cross-sectional independence entails that portfolios with the same risk and the same abnormal return have the same performance. Scale independence makes sure that the performance measure only depends on the measure of risk and is independent of the scale of the risk premium. This is a crucial property since it guarantees, for instance, that the Treynor ratio is invariant to a change in currency when a portfolio denominated in a foreign currency is studied in the domestic currency.

Generalising the Treynor ratio

Current shortcomings

Since the publication of Ross’s (1976) Arbitrage Pricing Theory (APT), it has been widely acknowledged that the use of a single index in a market model is probably not sufficient in order to keep track of the systematic sources of portfolio returns in excess of the risk free rate. Consequently, the developments of unconditional asset pricing models have taken two directions: either they added additional risk premia to the classical CAPM like in Fama and French (1993) and Carhart (1997), or they used a pure multi-factor approach in the spirit of the APT, like in Chen, Roll and Ross (1986). In spite of their differences in conception and statistical assumptions, both approaches share a very general model specification that can be summarised as follows, still considering the ex-post multi-dimensional equation corresponding to (3):

\[
\tilde{r}_i = \alpha_i + \sum_{j=1}^{K} \beta_{ij} \tilde{r}_j
\]

where \(j = 1, \ldots, K \) denotes the number of distinct risk premia and \(\sum_{j=1}^{K} \beta_{ij} \tilde{r}_j > 0 \). As it can be immediately noticed, the alpha remains a scalar whereas the systematic risk measures of the portfolio is made of a vector \((\beta_{j1}, \ldots, \beta_{jk}) \) of loadings to the individual risk premia. This additional source of complexity probably explains why only the Jensen measure has been widely applied in the performance evaluation literature with multi-factor models while the Treynor ratio has been completely ignored, as in the comprehensive study performed by Kothari and Warner (2001).

Yet, it is highly desirable to have a measure of that kind at one's disposal. In the portfolio management area, the single use of Jensen's alpha may provide unfair judgements over the performance of portfolios that invested in very different classes of risks, simply because there presumably exists a positive relationship between the scale of excess returns that can be obtained from an investment strategy and its aggregate level of risk. The current, general failure to take these relationships into account leads to unduly favouring well-performing risky portfolios (high positive alphas) while condemning bad performers in the same population (low negative alphas).
The most likely explanation for the current shortage of risk-adjusted, relative performance measure like the Treynor measure is the lack of a natural reduction method, going from the K-dimensional risk space to a one-dimensional measure. Obviously, the simplest reduction rules that would account for all sources of risk, like

\[\frac{\alpha_i}{\sum_{j=1}^{K} \beta_{ij} \tilde{r}_j} \quad \text{or} \quad \frac{\alpha_i}{\sum_{j=1}^{K} \beta_{ij} \tilde{r}_j^*} \]

are not satisfactory, as the first measure does not satisfy the cross-sectional independence requirement while the second one fails to account for scale independence property. Surprisingly, a thorough review of the literature reveals that these basic obstacles appeared to be sufficient to prevent theoretical research to go deeper in this area.

Desirable Properties

Call the Generalised Treynor ratio (GT) a risk-adjusted performance measure that would fill the same role as the Excess Treynor ratio in a multivariate setup. It has to at least respect the same basic properties as its univariate counterparts.\(^1\) Considering that for every portfolio, the sum of risk premia is positive \(\sum_{j=1}^{K} \beta_{ij} \tilde{r}_j > 0 \), one can re-express the previous characteristics in an adapted way:

- **(C1) Ratio of Euclidian distances**: The Generalised Treynor ratio is a slope measure, i.e. the ratio of an Euclidian norm in the returns space to a Euclidian norm in the K-dimensional risk hyperspace.
- **(C2) Monotonicity with required return**: If a portfolio has to earn a greater ex-post required return than another and both have the same alpha, then the portfolio with greater required return has the lower Generalised Treynor ratio: \(\forall i, i' \text{ such that } \alpha_i = \alpha_{i'} \Rightarrow GT_i < (\text{resp.} > =) GT_{i'} \).
- **(C3) Benchmarking**: A portfolio \(m \) is taken as a benchmark and the Generalised Treynor ratio of every portfolio with the same required return as the benchmark is equal to its alpha: \(\forall i \text{ such that } \alpha_i = \alpha_m \). \(GT_i = \alpha_i \).
- **(C4) Cross-sectional independence**: All portfolios whose required return is similar obtain the same ranking as the one given by their alpha: \(\forall i \text{ such that } \alpha_i = \alpha_{i'} \). \(GT_i > (\text{resp.} < =) GT_{i'} \). \(\Leftrightarrow \alpha_i > (\text{resp.} < =) \alpha_{i'} \).
- **(C5) Scale independence**: If the scale of the risk premia is changed from one market, benchmark or period to another, then the Generalised Treynor ratio is unchanged: for any two periods where \(\tilde{r}_j \) is measured at the same time as \(\tilde{r}_j^* \) and \(\tilde{r}_j^* \) is measured at the same time as \(\tilde{r}_j^* \), \(j = 1, \ldots, K \) such that, \(\forall j, \beta_{ij} = \beta_{ij}^* \) and \(\tilde{r}_j = k\tilde{r}_j^* \), \(k \in \mathbb{R}^* \), then \(GT_i > (\text{resp.} < =) GT_i^* \Leftrightarrow \alpha_i > (\text{resp.} < =) \alpha_i^* \).

Furthermore, the particular issue of a multi-factor model involves that two additional conditions are respected by the Generalised Treynor ratio:

- **(C6) Model independence**: If all portfolios provide the same ex-post required return with two different models for the same period, then the Generalised Treynor ratio is unchanged: for any two models where \(\tilde{r}_j \) is measured at the same time as \(\tilde{r}_j \), \(j = 1, \ldots, K \) and \(\tilde{r}_j^* \), \(j = 1, \ldots, K^* \) such that \(\forall j, \sum_{i=1}^{K} \beta_{ij} \tilde{r}_j = \sum_{i=1}^{K^*} \beta_{ij} \tilde{r}_j^* \), then \(GT_i = GT_i^* \).
- **(C7) Parsimony**: Among all measures that respect conditions C1 to C6, the Generalised Treynor ratio is the one that requires the least number and repetition of parameters.

The sixth condition introduces a consistency of the measure with respect to modelling choices. In particular, for \(K=1 \), it requires that \(GT_i = ET_i \). The last condition is not properly a technical one, but\(^1\) - It is worth mentioning that this section is not meant to propose an axiomatic approach of what should be a measure of risk-adjusted portfolio performance, but rather to represent the key features of the Treynor ratio in a multivariate setup.
rather requires that the Generalised Treynor ratio represents the simplest measure respecting the previous technical conditions.

The Generalised Treynor ratio

The intuition leading to the Generalised Treynor (henceforth GT) ratio can be easily presented. Imagine that the asset pricing model involves totally independent sources of risk that correspond to identical risk premia: in this situation, all portfolios whose sum of the risk loadings (betas) is identical have comparable exposures to risk. Forcing the financial world, where sources of risk are interdependent and of unequal importance, to fit in this framework would leave a very simple problem to solve.

Following these lines, and provided that the ex-post asset pricing equation of every portfolio \(i \) corresponds to a \(K \)-factor model that can be adequately represented by equation (6) where

\[
\sum_{j=1}^{K} \beta_{ij} \bar{r}_j > 0,
\]

the expression for the GT ratio is given by the following equation:

\[
GT_i = \alpha_i \frac{\sum_{j=1}^{K} \bar{r}_j^*}{\sum_{j=1}^{K} \beta^*_j \bar{r}_j^*} \tag{7}
\]

where \(\bar{r}_j^* = \bar{r}_j \beta^*_m \), \(\beta^*_j \), \(j = 1, \ldots, K \) and \(\beta^*_m \) is the loading of the benchmark portfolio \(m \) on the \(j \)'s source of risk.

The derivation of this ratio and the proof that it is the only ratio that satisfies all the conditions listed above are presented in Appendix A. In particular, this ratio is shown to bear the basic interpretation of a ratio of a distance in the returns space over a distance in the risk space. More importantly, it does indeed combine all necessary technical requirements (conditions C1 to C6) with a desirable simplicity.

This expression for \(GT_i \) has an interpretation that directly relates to the original Excess Treynor ratio: it provides the abnormal return of portfolio \(i \) per unit of premium-weighted average systematic risk. It reduces to the \(ET_i \) for a single index model. Notice that the required excess return is constrained to be positive for both the portfolio under study and the benchmark.

The absence of a benchmark portfolio could still lead to an interpretable measure, but its usefulness could only be sustained within a particular version of the asset pricing model. Then, the dependence of \(GT_i \) on the scale of the risk premia forbids any cross-model comparison, while setting the numerator of the GT ratio to a constant for all portfolios would violate condition C5 and make comparisons of securities performance across time impossible.

The key to the geometric argument underlying this Proposition is to normalise the risk referential with orthogonal, normalised axes and to pick a portfolio that has the same coordinates on every axis. The output of this procedure is such that it allows to switch to the asset pricing model, even if risk premia are not independent.

A crucial property of this ratio is the perfect independence of the measure with the choice of model specification, provided the compared models are versions of each other, i.e. they provide exactly the same required returns for all portfolios. This is verified because the numerator and denominator of the ratio in equation (7) are both independent of the model parameterisation provided that it accounts for the same risk dimensions. A test of equalities of the GT ratio for all portfolios could be more relevant to test the consistency of different asset pricing models than a direct test on the Jensen’s alphas, obviously less precise.
One may wonder why deriving such a simple formula, and especially why the financial literature
has never emphasised its usefulness. The reason probably lies in fact that such a formula proposed
without proper justification of its applicability would be useless for the financial community.
Since no performance measure is acceptable if it is not accepted by the whole funds industry, its
isolate adoption would just be taken as another episode in the self-promotion of funds managers.

Through its compliance with all listed basic conditions, the GT ratio is justified on geometrical as
well as analytical grounds. The reduction of a multi-dimensional space into one single distance
measure had not yet been performed, probably because it is not natural to consider that portfolios
with very different risk profiles but with the same overall exposure to the sources of risk priced by
the market could share a single uni-dimensional risk measure. Such a simplification might be
considered as arbitrary, as there are many ways to realise this projection. As a matter of fact, the
GT ratio is not the only measure satisfying all desirable technical conditions, but it is the simplest
and most parsimonious one, which is a valuable asset for practitioners.

An Empirical Example
The measure of risk-adjusted performance we propose has been shown to be of theoretical
relevance, i.e. it is the most parsimonious measure that respects a set of conditions that ensures its robustness
to various model, benchmark or scale specifications. This would remain at the stage of a probably
nice but irrelevant exercise if the qualities of the GT ratio could not be demonstrated in practice.
In particular, the very fundamental criticism of the design of this measure, even in the single
factor CAPM setup, is related to the usefulness of designing a performance measure per unit of
systematic risk. The underlying rationale is simple: as it is undoubtedly less intuitive than Jensen’s
alpha, it should provide a clearly superior portfolio ranking ability as a compensation; if it fails
to do so, why bother with such a ratio? Indeed, Jensen’s alpha also respects conditions C3 to C6
and is obviously superior to the Generalized Treynor ratio for condition C7; it only fails to respect
condition C2. This is a very important violation, though, because the availability of a riskless asset
and the use of homemade leverage (as illustrated in the classical textbook-example of lending and
borrowing that enables the investor to choose any location along the Capital Market Line) proves
the unequivocal superiority of the Treynor Ratio – and so of its generalised version – over the
alpha. But this remains a theoretical advantage; if portfolio rankings are barely different for both
ratios, then the simplicity of Jensen’s alpha is practically superior.

The empirical illustration that we present in this paper is meant to address this criticism with
the use of real data. This brings a major difference with respect to the conceptual framework
presented above: for a given portfolio, a change in the benchmark, in the model specification or in
the period will almost automatically change its statistical levels of required returns and of excess
return. Therefore, it is highly likely that any such change will induce variations in performance
measures for all portfolios, and so changes in rankings. The goal of this section is therefore to
assess whether the claimed robustness of the GT ratio with respect to changes in benchmarks,
that accounts for the change in the alpha but also in the portfolio’s and the benchmark’s required
returns, leaves of more reliable picture of the performance rankings of mutual funds than if the
alpha is used as an alternative.

We use a sample of nine mutual funds, each of them being in the top ten performing fund, in
absolute terms, of their category over either a one-year or a five-year period ending 1 April,
2003, with an additional requirement that all funds should have a nine-year history of returns.
Categories have been defined as the classical Large/Midcap/Small and Growth/Blend/Value styles.
Data has been extracted from Yahoo! Finance.
The asset pricing model of reference is the four-factor specification put forward by Carhart (1997). Monthly returns for the size (SMB), book-to-market (HML) and momentum (PR1YR) factors has been extracted from Eugene Fama’s website. The tested variations of this model are the Fama and French (1993) 3-factor model and the single index CAPM. The same underlying risk premia are used throughout.

Table 1. Summary Statistics for Top Performing Funds in their Category

<table>
<thead>
<tr>
<th>Category</th>
<th>p</th>
<th>St.dev.</th>
<th>Skew.</th>
<th>Kurt.</th>
<th>max</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federated Capital Appr. A</td>
<td>Large/Blend</td>
<td>0.75</td>
<td>4.87</td>
<td>-0.61</td>
<td>18.1</td>
<td>11.68</td>
</tr>
<tr>
<td>American Funds Growth A</td>
<td>Large/Growth</td>
<td>0.63</td>
<td>5.38</td>
<td>-0.43</td>
<td>1.75</td>
<td>13.67</td>
</tr>
<tr>
<td>Clipper</td>
<td>Large/Value</td>
<td>0.53</td>
<td>4.76</td>
<td>-1.40</td>
<td>31.1</td>
<td>10.59</td>
</tr>
<tr>
<td>AIM Mid Cap Core Equity A</td>
<td>Midecap/Blend</td>
<td>0.60</td>
<td>5.63</td>
<td>-0.82</td>
<td>27.4</td>
<td>12.18</td>
</tr>
<tr>
<td>INVESCO Leisure Inv</td>
<td>Midcap/Growth</td>
<td>0.67</td>
<td>5.32</td>
<td>-0.79</td>
<td>23.6</td>
<td>12.31</td>
</tr>
<tr>
<td>Lord Abbett Mid-Cap Value A</td>
<td>Midecap/Value</td>
<td>0.65</td>
<td>4.85</td>
<td>-0.61</td>
<td>20.9</td>
<td>14.09</td>
</tr>
<tr>
<td>Fidelity Low-Priced Stock</td>
<td>Small/Blend</td>
<td>1.08</td>
<td>3.94</td>
<td>-1.11</td>
<td>23.8</td>
<td>10.10</td>
</tr>
<tr>
<td>Vanguard Explorer</td>
<td>Small/Growth</td>
<td>0.68</td>
<td>6.39</td>
<td>-0.05</td>
<td>22.7</td>
<td>10.06</td>
</tr>
<tr>
<td>T. Rowe Price Small-Cap Value</td>
<td>Small/Value</td>
<td>0.60</td>
<td>3.95</td>
<td>-0.79</td>
<td>18.0</td>
<td>8.96</td>
</tr>
</tbody>
</table>

Table 1 provides summary statistics of returns for these funds in excess of the three-months T-Bill rate and adjusted for dividends over the January 94–December 2002 period. They all exhibit a total rate of return ranging from 0.53% to 1.08%, corresponding to an equivalent yearly premium of 6.5% to 13.8%. Standard deviations and ranges of variation are fairly similar from one fund to another. Their negative skewness and very high kurtosis suggest that their returns are highly nonnormal, with fat tails and negative asymmetry. Therefore, the use of a single index model, like the CAPM, is not justified on distributional grounds.

Table 2. Factor loadings and required returns of style benchmark portfolios

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>4-factor</th>
<th>3-factor</th>
<th>1-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P500</td>
<td>0.98</td>
<td>-0.19</td>
<td>0.03</td>
</tr>
<tr>
<td>S&P500 growth</td>
<td>0.93</td>
<td>-0.28</td>
<td>-0.31</td>
</tr>
<tr>
<td>S&P500 value</td>
<td>1.03</td>
<td>-0.11</td>
<td>0.39</td>
</tr>
<tr>
<td>S&P400 mid-cap</td>
<td>1.07</td>
<td>0.28</td>
<td>0.29</td>
</tr>
<tr>
<td>S&P400 mid-c. g.</td>
<td>1.15</td>
<td>0.34</td>
<td>-0.08</td>
</tr>
<tr>
<td>S&P400 mid-c. v.</td>
<td>0.99</td>
<td>0.19</td>
<td>0.64</td>
</tr>
<tr>
<td>S&P600 small-cap</td>
<td>1.02</td>
<td>0.76</td>
<td>0.40</td>
</tr>
<tr>
<td>S&P600 small-c. g.</td>
<td>0.97</td>
<td>0.76</td>
<td>0.03</td>
</tr>
<tr>
<td>S&P600 small-c. v.</td>
<td>1.05</td>
<td>0.72</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Nine indices computed by Standard & Poors, each one corresponding to the underlying style of the funds, are used as benchmarks. Table 2 reports the risk sensitivities and required returns of these benchmarks for each asset pricing model. Not surprisingly, the momentum factor dramatically alters the total risk premia. For the single model they range between 0.38% and 0.61%. The range is narrowed to an interval of less than 11 b.p. (0.607%-0.500%) for the three-factor model, while it explodes to more than 150 b.p. (1.549%-0.097%) when momentum is included. This shows the extreme sensitivity of empirical results to the choice of asset pricing models. Such a finding somehow contradicts, on one the hand, the hypothesis of equivalent asset pricing models underlying the GT ratio; on the other hand, it clearly emphasises the need for a performance ratio that yields consistent rankings across asset pricing model specifications, and so provides a practical justification to this empirical exercise.

2 - This is supported by the Jarque-Bera statistics, available upon request.
The Fama-French specification significantly outperforms the one-factor CAPM, but the adjusted R^2 for the four-factor regressions are slightly better. Thus, although the risk premia of the benchmarks are more volatile with the latter model, I use it as the base case to assess the robustness of portfolio performance measures with respect to changes in benchmark portfolios and in asset pricing models.

Table 3. Statistics of the performance measures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>GT</td>
<td>α</td>
</tr>
<tr>
<td>4-factors/S&P500</td>
<td>-0.23</td>
<td>-0.16</td>
<td>-0.43</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.21)</td>
<td>(0.57)</td>
</tr>
<tr>
<td>4-factors/style bench.</td>
<td>0.08</td>
<td>-0.02</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.36)</td>
<td>(0.53)</td>
</tr>
<tr>
<td>3-factors/style bench.</td>
<td>-0.15</td>
<td>-0.15</td>
<td>-0.36</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.25)</td>
<td>(0.65)</td>
</tr>
<tr>
<td>1-factor/style bench.</td>
<td>-0.16</td>
<td>-0.13</td>
<td>-0.56</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.27)</td>
<td>(0.64)</td>
</tr>
</tbody>
</table>

The mean and standard deviations (between parentheses) of Jensen's alpha and of the GT ratios for each asset pricing model are displayed in Table 3. To ensure that they correctly capture the relative performance of the funds, the alphas of their respective benchmarks have been subtracted from their absolute value. For the four-factor specification, the table reports performance measures computed against style benchmarks as well as against the single S&P500 portfolio. The test has been performed for the whole 9-year period and for the 1994-1996 and 1997-1999 subperiods. The 2000-2002 period could not be tested as the risk premia for all benchmark portfolios were negative, making it impossible to compute economically significant performance measures. Results suggest that the mean Generalised Treynor ratio is more consistently negative than the alphas. At the same time, their dispersion is much greater, as indicated by higher standard deviations than for the alphas. Not surprisingly, by accounting for the risk exposures of each portfolio, the range of observed values of the GT ratios is much broader than the one of alphas, indicating a superior ability to discriminate funds on a cardinal basis.

This dispersion can be a double-edged weapon if the values provided by the GT ratio are less reliable than the classically used Jensen’s alpha. It is therefore necessary to assess the robustness of the competing performance measures for the nine selected funds, by checking their sensitivity to changes in referential.

Table 4. Differences with the 4-factor/style benchmarks specification

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>GT</td>
<td>α</td>
</tr>
<tr>
<td>4-factors/S&P500</td>
<td>0.32</td>
<td>0.15</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.43)</td>
<td>(0.71)</td>
</tr>
<tr>
<td>3-factors/style bench.</td>
<td>0.23</td>
<td>0.13</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.21)</td>
<td>(0.61)</td>
</tr>
<tr>
<td>1-factor/style bench.</td>
<td>0.24</td>
<td>0.12</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>(0.33)</td>
<td>(0.20)</td>
<td>(0.58)</td>
</tr>
</tbody>
</table>

Table 4 reports the mean and standard deviations of the differences between the values of the alphas and of the Generalised Treynor Ratios under the base case and the alternative specifications. For the whole nine-year period, results are strikingly in favour of the GT ratio. The mean difference between values of this measure under the four-factor model with style benchmarks is approximately half the one of the alphas, for every alternative specification. The lower standard deviation of these differences also suggests that alphas are less stable from one model or benchmark to another.

3 - The noticeable exception of the positive average Generalised Treynor ratio for the 4-factor, style benchmark specification in the 1994-1996 subperiod is due to a portfolio with a very high loading on the momentum factor that has a GT higher than 4.
For the subperiods, the picture is different. The GT ratio still proves its superiority over the alpha in the 1997-1999 period, with lower average differences and similar standard deviations, but seems to perform poorly in the period 1994-1996. The presence of a large outlier for the GT of one mutual fund mostly explains this behaviour.

Put altogether, this limited piece of parametric evidence indicates that the new performance measure proposed in this article exhibits many desirable properties, as it provides a greater dispersion among mutual funds than Jensen’s alpha does but, at the same time, remains more robust for a change in the model or the benchmark chosen. This superior performance looks very convincing for a long horizon, but is more disputable over shorter time periods. Since this seems to be mainly due to the presence of very large values of this ratio – remember that the GT ratio uses the total required return of the portfolio in the numerator; if it is close to zero, the ratio is likely to explode – some nonparametric measures of reliability may provide a better picture of the robustness of the performance measures under study.

Table 5. Nonparametric comparisons for the subperiods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign switches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-factors/S&P500</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>3-factors/style bench</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1-factor/style bench</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Rank correlations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-factors/S&P500</td>
<td>-0.03</td>
<td>0.65*</td>
</tr>
<tr>
<td>3-factors/style bench</td>
<td>0.28</td>
<td>0.60*</td>
</tr>
<tr>
<td>1-factor/style bench</td>
<td>0.38</td>
<td>0.92*</td>
</tr>
</tbody>
</table>

Some insights regarding these matters are provided in Table 5. The relative performance of the measures are examined for the two subperiods. The first indicator is the number of sign switches for the nine mutual funds, i.e. the number of times a performance measure is positive (resp. negative) for the base case and negative when the benchmark of the asset pricing model is modified. The second indicator is Spearman’s rank correlation coefficient between rankings made under the alternative specifications. The asterisk means that the absence of correlation can be rejected at the 5% level. Results confirm the hypothesis previously put forward: the GT Ratio generates more extreme values, but appears to be superior to the alpha when the signs and rankings are considered. Sign violations are consistently less numerous for the GT ratio, indicating that positive or negative abnormal performances are more reliable when using this measure. On the other hand, the ordering of funds remains more stable with this new measure, which contributes to the making of rankings fairly independent of the model or the benchmark used.

Conclusion

This article proposed to generalise the Treynor ratio in a multi-index setup through the recourse to a geometric argument: since the original measure represents a proportion of distances in the returns and in the systematic risk referentials, a multi-dimensional counterpart can be justified in an orthonormal risk referential. From that starting point, the proposed Generalised Treynor ratio represents the simplest measure that bears this interpretation and, at the same time, manages to conserve the key properties of its one-dimensional counterpart. For a given portfolio, its formula simplifies to a simple ratio of Jensen’s alpha over an average of the betas.

The empirical comparison of the Generalised Treynor ratio with Jensen’s alpha, although very preliminary, provides a promising set of results concerning the robustness of this new performance
measure. It appears to bear, quite remarkably, changes in asset pricing specification or in benchmarks. This illustration is not meant to be exhaustive, but simply to justify the use of this ratio as a credible alternative to Jensen’s alpha, for instance for portfolio rankings or simple to check the ability for a manager to obtain positive abnormal performance. It is naturally important to assess whether the long-lasting debates over performance persistence of mutual funds or of relative performance of hedge funds would benefit from the availability of this refined measure.

Unlike many academic articles, this paper has no ambition to be technically involved, but simply aims at filling a strange gap in the performance evaluation literature. The lack of risk-normalised performance measure for multi-factor models had increasingly become a painful anomaly in the current blossoming of empirical studies focusing on mutual and hedge funds performance. By allowing a safe comparability of performances across risk exposures but also across models and units, the simple formula for the Generalised Treynor ratio has the potential to create more objective classification procedures. The simple design of this measure, instead of being a hindrance for its adoption, could be the best guarantee of a wide use in the financial communities, whether academic or professional. It is up to them to decide.

Appendix A: Derivation of the Generalised Treynor Ratio

I start from the fundamental condition C1, stating that the Generalised Treynor ratio can be written as a ratio of Euclidian distances. Therefore, the general analytical expression should look like the following:

\[GT_i = \frac{f(\alpha_i, \beta_{i1}, ..., \beta_{ik}, ..., \beta_{im}, ..., \beta_{mk}, \tilde{r}_1, ..., \tilde{r}_k, K)}{g(\alpha_i, \beta_{i1}, ..., \beta_{ik}, ..., \beta_{im}, ..., \beta_{mk}, \tilde{r}_1, ..., \tilde{r}_k, K)} \]

where \(f\) and \(g\) are two distinct measures of Euclidian norms. Moreover, from condition C6, it must be that \(f(\alpha_i, \beta_{i1}, ..., \beta_{ik}, ..., \beta_{im}, ..., \beta_{mk}, \tilde{r}_1, ..., \tilde{r}_k, K) = D(0, \alpha_i) = \alpha_i\). Therefore, \(g\) must be a distance measure enabling at the same time the Generalised Treynor ratio to respect conditions C2 to C7.

Consider that the returns generating process that corresponds to the market model for a security \(i\) is a factor model, corresponding to the following equation:

\[r_i = \sum_{j=1}^{K} \beta_{ij} r_{jt} + \epsilon_i = \sum_{j=1}^{K} b_j \rho_{jt} + \eta_i \]

where \(\epsilon_i \) and \(\eta_i \) are orthogonal to \(\rho_{jt} \) for \(j \neq j' \) and to it \(\eta_i \). The realised return of security \(i \) is given by:

\[\tilde{r}_i = \alpha_i + \sum_{j=1}^{K} b_j \tilde{r}_j \]

Risk premia are scaled such that \(\sum_{j=1}^{K} \tilde{\rho}_j = \sum_{j=1}^{K} \tilde{r}_j \) and \(\tilde{\rho}_j > 0 \).

The fact that the factors are orthogonal ensures the orthogonality of the \(K \)-dimensional space of risk loadings. To obtain an orthonormed space, every risk premium should be normalised to a single unit. Define the weight of factor \(j \) by:

\[w_j = \frac{\tilde{\rho}_j}{\sum_{j=1}^{K} \tilde{\rho}_j} \]

(10)
Using (10), Equation (9) can be rewritten as:

\[
\tilde{r}_i = \alpha_i + \sum_{j=1}^{K} b_{y_j} w_j \left(\sum_{j=1}^{K} \tilde{\rho}_j \right)
= \alpha_i + B_i \bar{R}
\]

where \(\bar{R} = \sum_{j=1}^{K} \tilde{\rho}_j , B_i = \sum_{j=1}^{K} b_{y_j} w_j \).

To respect condition C4, the Generalised Treynor ratio of all portfolios requiring the same return should provide the same ranking as the one obtained with their alpha. In particular, \(GT_i > (\text{resp } <, =) GT_p \) for a portfolio \(p \) where \(\alpha_p > (\text{resp } <, =) \alpha, B_a = B, \) and

\[b_{p1}^* = b_{p2}^* = ... = b_{pk}^* = \frac{B_i}{K} \]

choose \(p \) as a portfolio that provides the same required return as portfolio \(i \) but whose risk loadings \(b_{yj}^* \) are all identical.

The Euclidian distance between 0 and the coordinates of this portfolio on the \(K \)-dimensional orthonormed risk axis is:

\[
D(0, b_{p1}^*, b_{p2}^*, ..., b_{pk}^*) = \sqrt{\sum_{j=1}^{K} b_{yj}^* \tilde{\rho}_j^2} = \sqrt{\frac{B_i}{K} \left(\sum_{j=1}^{K} \tilde{\rho}_j^2 \right)}
\]

provided that \(B_i > 0 \). The last line follows from noticing that

\[B_i = \frac{\sum_{j=1}^{K} b_{yj} \tilde{\rho}_j}{\sum_{j=1}^{K} \tilde{\rho}_j} \]

By equation (8), \(\sum_{j=1}^{K} \beta_{yj} \tilde{r}_j = \sum_{j=1}^{K} b_{yj} \tilde{\rho}_j \) and \(\sum_{j=1}^{K} \tilde{r}_j = \sum_{j=1}^{K} \tilde{\rho}_j \). Setting that

\[g(\alpha_i, \beta_{p1}, ..., \beta_{pk}, \tilde{r}_1, ..., \tilde{r}_K) = \sqrt{K} D(0, b_{p1}^*, b_{p2}^*, ..., b_{pk}^*) \]

leads to the Absolute Generalised Treynor ratio (AGT):

\[
AGT_i = \frac{\sum_{j=1}^{K} \tilde{r}_j}{\sum_{j=1}^{K} \beta_{yj} \tilde{r}_j}
\]

The Absolute Generalised Treynor Ratio is a scale-dependent performance ratio that respects conditions C1 (by construction), C2, C4, C5, and C6. However, its value depends on the simple sum of the risk premia that shows up on the numerator: it is sensitive to the arbitrary scale of the risk premia, but also to their correlation structure. Therefore, condition C3 is violated.

To respect the benchmarking condition (C3), it suffices to normalize each risk premium by multiplying it with the beta of the benchmark portfolio \(m \): \(\sum_{j=1}^{K} \tilde{r}_j^* = \sum_{j=1}^{K} \tilde{r}_j \beta_{mj} \) by defining \(\tilde{r}_j^* = \tilde{r}_j \beta_{mj} \).

This rescaling of the risk premia induces a rescaling of each securities' betas: \(\beta_{yj}^* = \frac{\beta_{yj}}{\beta_{mj}} \).
The Absolute Generalised Treynor ratio of a security i is normalised by the one of the benchmark portfolio m, which yields the expression of the Generalised Treynor Ratio GT_i that respects conditions C1 to C6.

$$GT_i = \alpha_i \frac{\sum_{j=1}^{K} \beta_{ij}}{\sum_{j=1}^{K} \beta_{mj}} \frac{\bar{r}_j}{\bar{r}_m}$$

(14)

To prove that this is the unique measure that respects the simplicity condition (C7), it suffices to notice that we can rewrite this expression as

$$GT_i = \alpha_i \frac{\sum_{j=1}^{K} \beta_{ij} \bar{r}_j}{\sum_{j=1}^{K} \beta_{ij} \bar{r}_m}.$$

In this expression, every risk loading β_{ij} of portfolio i only appears once, every risk loading of benchmark portfolio m also appears only once, and every risk premium \bar{r}_j appears twice. If one risk loading were missing in this expression, then conditions C2 to C6 could be very easily shown to be violated. Therefore, this formula is the least parsimonious in betas. Furthermore, to respect at the same time conditions C4 and C5, homogeneity of degree zero with respect to the sum of risk premia has to be respected, which implies that every risk premium must show up at least twice. Hence, this expression is also the least parsimonious in risk premia. Therefore, it is the only measure respecting conditions C1 to C6 that also respects condition C7.

References

Founded in 1906, EDHEC Business School offers management education at undergraduate, graduate, post-graduate and executive levels. Holding the AACSB, AMBA and EQUIS accreditations and regularly ranked among Europe’s leading institutions, EDHEC Business School delivers degree courses to over 6,000 students from the world over and trains 5,500 professionals yearly through executive courses and research events. The School’s ‘Research for Business’ policy focuses on issues that correspond to genuine industry and community expectations.

Established in 2001, EDHEC-Risk Institute has become the premier academic centre for industry-relevant financial research. In partnership with large financial institutions, its team of ninety permanent professors, engineers, and support staff, and forty-eight research associates and affiliate professors, implements six research programmes and sixteen research chairs and strategic research projects focusing on asset allocation and risk management. EDHEC-Risk Institute also has highly significant executive education activities for professionals. It has an original PhD in Finance programme which has an executive track for high level professionals. Complementing the core faculty, this unique PhD in Finance programme has highly prestigious affiliate faculty from universities such as Princeton, Wharton, Oxford, Chicago and CalTech.

In 2012, EDHEC-Risk Institute signed two strategic partnership agreements with the Operations Research and Financial Engineering department of Princeton University to set up a joint research programme in the area of risk and investment management, and with Yale School of Management to set up joint certified executive training courses in North America and Europe in the area of investment management.