Frictional Diversification Costs: Evidence from a Panel of Fund of Hedge Fund Holdings

January 2016

Juha Joenväärä, PhD
Assistant professor, University of Oulu, Finland

Bernd Scherer, PhD
Managing Director, Deutsche Asset Management
Research Associate, EDHEC Business School
Abstract
Using FoFs’ holdings data, we analyse the diversification choices of fund of hedge fund managers. Diversification is not a free lunch. It is not available for every fund of fund. Instead we find a positive log-linear relation between the number of constituent funds in a fund of hedge fund (n) and the respective assets under management (AuM). More precisely it takes the form: \(n^2 \propto \text{AuM} \). This relation is consistent with the predictions from a model of naive diversification (1/n) with frictional diversification costs such as due diligence costs. Our evidence is econometrically robust across alternative specifications and explanations.

JEL Classification: F14, G14

EDHEC is one of the top five business schools in France. Its reputation is built on the high quality of its faculty and the privileged relationship with professionals that the school has cultivated since its establishment in 1906. EDHEC Business School has decided to draw on its extensive knowledge of the professional environment and has therefore focused its research on themes that satisfy the needs of professionals.

EDHEC pursues an active research policy in the field of finance. EDHEC-Risk Institute carries out numerous research programmes in the areas of asset allocation and risk management in both the traditional and alternative investment universes.
1. Introduction

This study analyses the diversification choices of a fund of funds (FoF). FoFs arguably involve the most sophisticated subset of institutional investors. For this purpose we extend the setup of Goldsmith (1976) to present a parsimonious log-linear, fixed-effects panel model for the optimal diversification of FoFs under frictional diversification costs. The optimal number of individual fund holdings in any FoF depends on the sum of assets under management (AuM), the costs of due diligence and/or monitoring (i.e. frictional diversification costs), and the respective (clientele) risk aversion. Brown et al. (2008a) describe due diligence as an expensive activity. Consequently, larger funds can more easily absorb that cost. Attitudes toward risk also impact the diversification choice: risk-averse investors are willing to incur more frictional diversification costs for a small reduction in risk than less for risk-averse investors.

We test our empirical model on a unique set of 10 years of quarterly data for a cross section of 127 FoFs. These panel data are obtained directly from SEC filings and are not available from commercial databases (e.g. Lipper TASS or BarclayHedge). We find strong evidence that frictional diversification costs limit the applicability of traditional diversification advice.

In our empirical analysis we use a set of fixed-effects panel regressions. In line with our theoretical predictions, increasing levels of AuM allow FoFs to increase their number of holdings with an elasticity of 0.5. This is consistent with a world where frictional diversification costs will force smaller funds of funds to offer a less diversified portfolio of hedge funds than their larger peers would. In the absence of those costs we might still find different levels of diversification related to fund manager conviction or predictive capabilities but not related to the fund size.

Our model survives a battery of robustness tests. First, we explore the robustness of fixed-effects panel regressions by dropping out potentially influential data points or individual FoFs. Second, we compare the fixed-effects regression with a pooled ordinary least-squares (OLS) regression. Without individual effects, the data would imply that FoFs do not differ with respect to frictional costs, risk aversion, or investment skill. However, we can reject the pooled OLS model that ignores individual effects which seem to be important. Next, we turn to non-linearities or threshold effects which might be important. It could be the case that when assets under management grow, a FoF can increase the number of its holdings because frictional diversification costs become proportionally smaller. Therefore, the predicted theoretical relation may not be log-linear. We find no empirical evidence for this either. Finally, to distinguish between the FoFs capital flow and assets under management, we explore dynamic panel regressions without changing our static results. To sum up, we provide robust evidence that FoFs tend to set portfolios with \(n^2 \propto \text{AuM} \).

We next relate the diversification to the FoF future performance. Our conjecture is that overdiversification (too high costs, i.e. too low expected return per unit of risk or sloppy due diligence if costs are not spend) is as detrimental to performance as under-diversification (too high risk per unit of expected return). Using both univariate and multivariate analyses, we document a robust statistical relationship between the degree of diversification and FoF future performance. Indeed, the FoFs diversifying more in line with our model's predictions deliver superior performance. The economic significance of this finding is large and it cannot be subsumed by other variables that has been documented to explain FoF performance. According to our multivariate regression results, FoFs that do not diversify along simple model deliver 2.72%–3.40% lower returns per annum compared to the FoFs that display diversification consistent with our model of diversification under frictional costs. Hence, even after controlling for the FoF's size (Brown, Frazier, and Liang 2008), the number of underlying funds (Brown, Gregoriou and Pascalau, 2012), the FoFs' capital flows (Fung, Hsieh, Naik and Ramadorai, 2008) and a proxies for operational risk (Brown, Goetzmann, Liang and Schwarz, 2008b, 2009, 2012), we find that our performance results holds suggesting the FoF diversifying closely along the lines of our simple
model deliver superior future performance. Our work is related on several steams of existing literature.

Previous work on FoFs is devoted mainly to one simple question: How many hedge funds are needed for a diversified fund of funds or a hedge fund portfolio? Henker and Martin (1998), Amin and Kat (2002), Lhabitant and Learned (2002), and Brown et al. (2012) all use a simple two-step procedure to test for over- or under-diversification:

Step 1: Simulate random portfolios of increasing size (i.e. increasing number of equally-weighted assets) and plot the evolution of volatility as a “diversification curve”: a functional relationship between portfolio standard deviation and portfolio size.²

Step 2: Decide when the marginal improvement in the statistic derived during step 1 becomes “small”.

What “small” means is usually determined by eyeballing the diversification curve, so that it tends to reflect the researcher’s subjective judgment (or perhaps his eyesight). Many papers – most recently Brown et al. (2012) – find that the optimal number of hedge funds ranges between 5 and 25. Without an explicit model from which to argue how much diversification is warranted in the presence of diversification costs this looks like an ambitious statement. We conclude that methods based on diversification curves have three major shortcomings. First, no attempt is made to specify the frictional costs of adding another fund to a portfolio. In the absence of such costs it is always optimal to naively diversify across all possible investments. In the early literature, Samuelson (1967) and Brennan (1975) make this point by stating that investors should diversify as much as possible while remaining aware of the trade-off between diversification and its costs. However, there is no study that formally incorporates the frictional diversification costs faced by real-world investors. We fill this research gap. Frictional costs comprise the costs, per each additional fund, of due diligence and monitoring as well as the loss of the power to bargain for fee rebates when diversifying among too many funds. The second main deficiency in the “diversification curve” method is that it does not account for the actual assets under management – even though fixed costs can be spread more easily across a large pool of assets. A decision maker seeking the optimal number of assets in which to invest $10 million versus $100 million should certainly receive a different answer in each case. Third, the reduction in volatility that diversification is intended to provide is most valuable for investors with high risk aversion. It is clear that investors with low risk aversion will be less willing to pay the diversification costs of reducing risks (i.e. reducing volatility by adding more funds).

Our research differs from that of authors who look to explain poorly diversified portfolios (portfolios with too little a number of names) in terms of the behavioural shortcomings of private versus professional decision makers. Statman (2004) coined the term “behavioural portfolio theory”: the attempt to (psychologically) rationalise the observed under-diversification of individual investors. In Statman’s view, individual investors divide their total wealth into mental “buckets” according to their investment goals. Equities fall into the top portfolio layer, which reflects the investor’s desire for returns to a “lottery ticket” scale. Recent support for this perspective is provided by Frazzini and Pedersen (2014), who find that aversion to leverage (a form of risk aversion) leads investors to construct under-diversified portfolios that concentrate on more volatile stocks. Elton et al. (2004), Plokovnichenko (2005), Mitton and Vornick (2007), and Phillips et al. (2007) all expand this theme of positive skewness and lottery preferences. Of course, a lack of diversification might simply reflect frictional diversification costs. We would then expect large funds (as measured by AuM) to display more diversification. This is the previously unexamined focus of our study.

² - In the case of volatility, Elton and Gruber (1977) show that a closed-form solution exists. Yet the simulation aspect is useful for illuminating how this procedure might extend to measures of risk and performance that are more complicated.
The work reported here is related to the growing set of papers addressing hedge fund operational risk and role as financial intermediaries. In a series of papers, Brown, Goetzmann, Liang and Schwarz (2008b, 2009, 2012) show that hedge funds with a higher operational risk tend to deliver lower average performance and to exhibit a greater likelihood of failure. Aiken et al. (2013b) show that FoFs may provide valuable due diligence and monitoring services for investors by firing underperforming managers. Agarwal, Nanda, and Ray (2013) examine hedge fund investments of institutional investors. They find that larger institutions enjoy economies of scale, enabling direct investment into relatively better performing hedge funds. Brown et al. (2012) use a cross-sectional snapshot (not longitudinal panel data) to establish that FoFs suffer from overdiversification and that this condition may well be associated with their inability to perform timely due diligence, which is costly when a FoF invests in a large number of hedge funds. In contrast to that research, we explicitly model the FoFs’ portfolio choice with frictional costs related to due diligence costs. Using unique panel data that do not suffer from endogeneity problems, we demonstrate that FoFs seem to follow a model of naive diversification adjusted to frictional diversification costs.

The rest of this paper is organised as follows. Section 2 derives a parsimonious empirical model for the optimal number of holdings in the presence of frictional diversification costs. Section 3 describes our data set, after which Section 4 presents the empirical results and robustness tests. Section 5 looks at individual positions. We also find that actual holdings are not inconsistent with the 1/n investing. Section 6 concludes.

2. A Parsimonious Model of FoF Diversification
Following Goldsmith (1976) and Scherer (2013), we assume that a FoF employs a naive decision maker who has no information on returns or risks. This decision maker will trade off the fund’s marginal benefits from naive diversification (formulated as marginal risk reduction multiplied by risk aversion) against their marginal costs to diversify, which we view as the frictional costs that arise from due diligence and monitoring. Diversification is measured by the number of hedge funds in a FoF. Despite this obviously heuristic way of conceiving diversification, Goetzmann and Kumar (2008) show that investors succeed (i.e. their returns increase) under naive diversification but not under optimised diversification – that is, when constructing a portfolio based on assets’ volatility and correlation.\(^3\) We model optimal diversification for a standard mean variance investor. In our case this investor looks for a solution of

\[
\arg \max_n \left(\mu - \lambda \sigma^2(n) - n \frac{f}{AuM} \right)
\]

Here \(\sigma^2(n)\) denotes the risk (variance) of an equally-weighted portfolio of size \(n\), \(\lambda\) the investor’s risk aversion, and \(\frac{f}{AuM}\) the additional costs (i.e. fixed costs \(f\) per additional fund as a fraction of assets under management, \(AuM\)). We can most simply think of \(f\) as the costs of a due diligence report. The costs of exercising due diligence are far from trivial, with industry insiders estimating them to range between $50,000 and $100,000 (US).\(^4\) However, this would make it a one-off expense which does not sit well with our panel data regression. The latter explicitly estimates within-funds effects, i.e. the reaction of a FoF to an increase or decrease of its assets under management. Instead we could interpret \(f\) as per time interval costs of holding a hedge fund either in the form of due diligence costs spread across the expected hedge fund holding period or as monitoring and complexity costs.

A few additional remarks on the implicit assumptions of our model are in order. First, our investor is unable to form differential estimates on either returns, volatility or correlation. He replaces individual estimates with universe-wide averages on returns, correlations and volatilities.\(^5\) While 1/n investors are typically investors that have no information at all, our investor must at least

\(^3\) In our context assets’ mean return, volatility and correlations are based on individual hedge fund returns.

\(^4\) See Greenwich Associates (2011). To the extent that due diligence costs are expected to fall (because of a secondhand market for due diligence reports), diversification will increase. According to Brown et al. (2012), due diligence reports are cheaper when investors are willing to share them.
have some information on universe averages. Otherwise he could not trade of the marginal increase in utility (from a marginal reduction in portfolio risk) with the marginal increase in diversification costs. Second, our model is a one period model. While this supports the interpretation of \(f \) as due diligence costs, we can view \(f \) more broadly as coordinating or monitoring costs that also apply in a multi-period context.

Another consequence from the one period character of the model is that we will exclude the fund managers incentives (maximise his fee income) from the model by assuming the manager of the FoF always acts in the clients' best interest. Without this assumption performance fee maximisation would lead the FoF manager to take excessive risk with no interest in diversification. Once we introduce performance based on fees, the portfolio management always has an incentive to increase risks in a one period model (with or without frictional diversification costs). Due diligence costs would make diversification even less attractive as these costs will work as a drag on performance and hence reduce expected performance fees. In contrast to this one period insight, the theoretical and empirical literature has shown that once we move to a multi-period setting – that allows us to introduce performance related job losses or outflows after performance blowout– the one period intuition to increase risks is largely mitigated. Fung and Hsieh (1997) and Brown, Goetzmann and Park (2001) find empirical evidence, that reputational concerns largely dampen risk taking incentives from one period models. Theoretical work by Xu and Scherer (2007) and Panageas and Westerfield (2009) confirms the empirical evidence. A one period intuition does not carry over to (real world like) multi-period environments.

Even if the existence of incentive fees would have a material effect on risk taking in the real world, we believe it is not relevant for two reasons. First, in our panel data regression individual effect will take care of the individual differences between FoFs. Second, we would not expect this to affect the relationship between the number of funds and assets under management, unless the incentive fee design covaries with the fund size. Third, the FoFs' constituent funds often impose tight share restrictions and use gates and side pockets, which makes the frequent portfolio rebalancing and, thereby, also risk taking very difficult for FoF managers.

We can now write down the first-order condition of our investor above as

$$\frac{f}{AuM} = -\lambda \frac{d\sigma^2(n)}{dn};$$

(2)

The expected variance for an equally-weighted portfolio is well known to be

$$\sigma^2(n) = \frac{\bar{\sigma}^2}{n} + \left(1 - \frac{1}{n}\right)\sigma^2\bar{\rho},$$

(3)

where \(\bar{\sigma} \) and \(\bar{\rho} \) are the average volatility and correlation in the universe of investable assets. We can find an explicit solution for the marginal change in risk,

$$\frac{d\sigma^2(n)}{dn} = \frac{1}{n^2}\sigma^2(\bar{\rho} - 1).$$

(4)

Substituting (4) into (2) yields

$$\frac{f}{AuM} = -\lambda \frac{1}{n^2}\sigma^2(\bar{\rho} - 1),$$

which can be solved for the optimal \(n \):

$$n^* = \sqrt{\frac{\lambda\sigma^2(1 - \bar{\rho})}{(\frac{f}{AuM})^{-1}}}.$$

(5)

5 - Although the ex post spreads might be large between funds, the ex ante predictability is low and difficult to exploit due to share restrictions (e.g. Jornväää, Kosowski and Tolonen 2014). However, the cross-correlations may not be similar between funds. Fortunately, several papers suggest that the accurate estimates for expected returns and variances are much more important than correlations (e.g. Chopra and Ziemba, 1991). We therefore believe that our assumption are realistic.

6 - Elton and Gruber (1977) prove that that this equality holds as an expectation if funds are selected randomly (i.e., without prior knowledge).

7 - This expression is identical to equation (1.10) in Goldsmith (1976, p. 1130). Despite its convincing intuition, that model was not adopted by the empirical literature and has been largely ignored in both academic and practical work. The rest of this section is devoted to extending the model's conclusions and shaping it into a testable form.
The optimal number of assets increases with rising risk aversion (\(\lambda\)), rising average volatility (\(\sigma^2\)), falling average correlation (\(\rho\)), falling frictional costs (\(f\)), and rising value of assets under management (AuM). A portfolio with a small number of assets need not be under-diversified. It could simply be a small portfolio (low assets under management), or it might belong to investors who are less averse to risk or who would incur high due diligence costs per additional fund.

For our naive investor facing frictional diversification costs, the risk of an optimally diversified portfolio (i.e. one for which the marginal benefits from diversification only just equal the costs of diversifying) is found by substituting (5) into (3):

\[
\sigma^2(n^*) = \sigma^2\rho + \sqrt{\frac{\sigma^2(1 - \rho)(f/AuM)}{\lambda}}.
\]

The first term on the right-hand side of (6) represents the average covariance risk in the available asset universe. This is the minimal achievable risk for \(n \to \infty\) — that is, in the absence of frictional costs or for investors who are infinitely averse to risk (rendering frictional costs unimportant). Note, that \(n \to \infty\) is in general not the optimal strategy for optimised diversification. The number of holdings in a minimum variance portfolio with known sample covariance under a long only constrained will not generally expand with the size of the universe. The second term reflects the higher risk that results when a diversification strategy accounts for its associated frictional costs, since those costs preclude investors from diversifying to the theoretical maximum. Taking logs on both sides of (5) results in a linear model,

\[
\log(n) = a + b \cdot \log(AuM) + \varepsilon,
\]

where \(a = 0.5 \cdot \log\left(\frac{\lambda \sigma^2(1 - \rho)}{f}\right)\) and \(b = 0.58\). However, our proposed model predicts that first, there is a positively sloped relationship between the number of funds and the amount of assets under management. Second, it predicts that this relation is not linear but log-linear, with a slope coefficient of 0.5. In a log-linear model, \(\hat{b}\) signifies elasticity (here, the percentage increase in number of assets for each percentage increase in assets under management). In order to test (7) on our unique panel data set, we propose running a fixed-effects model of the form

\[
\log(n_{it}) = a_i + b \cdot \log\left(AuM_{it}\right) + \varepsilon_{it},
\]

where \(i\) denotes a specific FoF and \(t\) a particular moment in time. This choice is motivated by the possibility of omitted variable bias in (7). Equation (7) is not likely to hold when investors are strongly convinced of their own forecasting ability; such conviction is the natural enemy of diversification. The better our forecasting abilities, the more concentrated (i.e. less diversified) our optimal portfolios will become. Hence it is safe to assume that investors with actual or even presumed forecasting skills will hold fewer funds than do investors with weaker forecasting abilities. Greater investment skills manifest as variation in individual effects (\(a_i\)). Investors who are optimistic about their level of forecasting ability will invest in a fewer FoFs irrespective of the amount of assets under management. So even though (7) suffers from that misspecification, our fixed-effects, panel data model uses cross-sectional units as controls. The consequences of unobserved investment skill should cancel out provided the effect of skill is constant (i.e. a fixed effect). Empirical facts also support our specification, because Fung, Hsieh, Naik and Ramadorai (2008) document that a subset of FoFs consistently delivers alpha or poses investment skill. Another neat side effect of our panel data model is that it corrects for alternative investment universes, clientele effects (risk aversion) and frictional diversification costs.

8 - Instead of using \(a_i\), we could also use \(n^*_i\) more generally for modelling total frictional costs. This would lead to \(a = \frac{1}{2} \log\left(\frac{\lambda \sigma^2(1 - \rho)}{f}\right)\) and \(b = \frac{1}{2}\). If costs functions differ, slopes across FoFs would also differ. For \(k < 1\) (economies of scale in information gathering) \(b > \frac{1}{2}\) and hence the number of funds rises faster with increasing assets under management. This would look like overdiversification, but it is not.
3. Data

To test the empirical predictions generated by our model of naive diversification under frictional costs, we use a panel of registered fund of (hedge) fund holdings for the period 2003Q1–2012Q4. A FoF may opt to register with the US Securities and Exchange Commission (SEC) under the Investment Company Act of 1940, thereby gaining wider distribution channels. Registered FoFs are considered to be closed-end funds and so are usually not listed on exchanges. Exactly as mutual funds do, registered FoFs must disclose mandated filings publicly, including quarterly disclosures of portfolio holdings and semi-annual financial statements. Following Aiken et al. (2013a, 2013b), we gather the underlying hedge fund holdings of our sample FoFs from SEC forms N-Q, N-CSRS, and N-CRS. The data in those filings enables us to create a panel of quarterly hedge fund holdings. For each FoF, the panel contains the current value of each position. Hence we can calculate each FoF’s total assets under management (AuM) and number of hedge funds (n) on a quarterly basis. Appendix A provides more details about data gathering process.

It is important to emphasise that commercial hedge fund databases do not provide panel data about the number of underlying hedge funds in which a FoF has invested. Therefore, it would be impossible to test our model predictions of frictional diversification costs if we were limited to using data obtained from commercial databases. Some commercial databases (e.g. BarclayHedge, EurekaHedge) do provide a “snapshot” view of how many individual funds are in a given FoF’s portfolio, but none of them provide information on how that number of funds changes over time. For example, the AuM of FoFs increased rapidly before the financial crisis but redemptions were rampant during that crisis. Finally, because our data contains actual investors’ holdings that are investable, it exhibits neither survivorship nor backfilling bias – both of which are typical of commercial databases (see, e.g. Fung and Hsieh (2000), Liang (2000), Agarwal et al. 2013). However, a potential concern is that our sample of FoFs may introduce a different form of selection bias because only a subset of FoFs is registered with the SEC. Fortunately, Aiken et al. (2013a) show that the returns of registered FoFs do not seem to differ from those of the FoFs that report to the commercial databases (BarclayHedge, HFR and Lipper TASS). Indeed, registered FoFs are often run by the most prominent hedge fund management firms that are rarely available for researchers (Edelman, Fung and Hsieh, 2013). We therefore believe that our novel data and model provide a fertile setting in which to explore the possibility of sophisticated institutional investors constructing portfolios that provide optimal diversification benefits even after frictional costs are taken into account.

Our raw data are summarised in Table 1 and represented graphically in Figure 1 and Figure 2. Both the dependent and the independent variables exhibit considerable variation across and also within units (FoFs). This feature of the data is important because it enables using a fixed-effects panel regression to address a potential omitted variable bias. We sort the 127 FoFs into five groups depending on the amount of available data. Because there are few observations for many of our sample FoFs, we are using an unbalanced panel. Of these 127 FoFs, 49 have less than one year of data available (about 2 quarters on average), and 76 FoFs have less than two years of quarterly data. The table includes (as row 5) the individual regression slopes derived from (7). However, the small number of observations virtually guarantees that individual regressions will yield unreliable estimates.

We therefore assume that the regression slopes are similar but not identical and apply the mean group estimator instead. In each group, for every FoF we estimate \(\log(n_i) = a_i + b_i \log(AuM_i) + c_i \).

Let \(T_i \) denote the number of available observations for the \(i \)th FoF; then the mean group estimator for all FoFs in group \(k \) is given by

\[
\tilde{b}_k = \left(\frac{1}{N(k)} \sum_{i=1}^{N(k)} \frac{T_i}{T_i} \right)^{-1}
\]

\[9\]

9 - Agarwal, Lu and Ray (2013) find that only 8 of registered FoFs report voluntarily to the Lipper TASS database.
where \(N(k) \) is the number of FoFs in this group. The variance of (9) is calculated as follows:

\[
\text{var}(\hat{b}_k) = \frac{\left(\sum_{i=1}^{N(k)} T_i^2 \right) \text{var}(\hat{b}_i)}{\left(\sum_{i=1}^{N(k)} T_i^2 \right)^{-1}}
\]

(10)

The mean group estimator is based on weighting individual regression slopes by the number of available observations. The variance of the mean estimate depends not only on the number of observations but also on the precision of each estimate. Except for the FoFs with long observation histories, all estimates are noisy and few differ significantly from our conjecture of 0.5.\(^{10}\)

Table 1: Data Characteristics
Funds of funds are sorted (by the number of available observations) into five sample size groups. For each group we report the number of FoFs it contains, the average number of observations, the average of \(\log(AuM) \), and the average number of holdings. We also estimate the mean group estimator for the average regression slope in \((\eta_i) = \alpha_i + \beta_i \log(AuM_i) + \epsilon_i \) for all FoFs in each group. Given \(T_i \) observations (for FoF \(i \)), the mean group estimator for all FoFs in group \(k \) is given by \(\hat{\beta}_k = \frac{\sum_{i=1}^{N(k)} \beta_i}{\sum_{i=1}^{N(k)} T_i} \) for \(N(k) \) the number of FoFs in the group.

The variance of the mean group estimator is given by \(\text{var}(\hat{b}_k) = \frac{\sum_{i=1}^{N(k)} \text{var}(\hat{b}_i)}{\sum_{i=1}^{N(k)} T_i} \).

<table>
<thead>
<tr>
<th>Number of FoFs, (N(k))</th>
<th>#Obs. < 4</th>
<th>4 ≤ #Obs. < 8</th>
<th>8 ≤ #Obs. < 12</th>
<th>12 ≤ #Obs. < 20</th>
<th>20 < #Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of observations</td>
<td>1.86</td>
<td>5.67</td>
<td>9.47</td>
<td>15.3</td>
<td>23.93</td>
</tr>
<tr>
<td>Average of (\log(AuM))</td>
<td>17.63</td>
<td>18.23</td>
<td>18.71</td>
<td>18.1</td>
<td>18.63</td>
</tr>
<tr>
<td>Average number of holdings, (n)</td>
<td>18.91</td>
<td>25.72</td>
<td>26.61</td>
<td>21.2</td>
<td>31.14</td>
</tr>
<tr>
<td>Mean group estimator (MGE) of (\beta)</td>
<td>0.12</td>
<td>0.49</td>
<td>0.66</td>
<td>0.55</td>
<td>0.37</td>
</tr>
<tr>
<td>Standard Deviation of MGE, (\sigma(\hat{b}))</td>
<td>0.21</td>
<td>0.27</td>
<td>0.09</td>
<td>0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure 1: Number of Holdings per FoF
The boxplots in this figure represent the distribution of the number of hedge fund holdings for each of our 127 FoFs. Entries are sorted from left to right by the number of available fund observations. Printed at the top of each grouping are the number of quarterly observations available for – and the number of FoFs belonging to – that group.

\(^{10}\) Performing robust regressions as suggested by Huber (1981) does not change our results.
Figure 2: Assets under Management per FoF
The boxplots in this figure represent the distribution of log(AuM) for each of our 127 FoFs. Entries are sorted from left to right by the number of available fund observations. Printed at the top of each grouping are the number of quarterly observations available for – and the number of FoFs belonging to – that group.

4. Empirical Tests
In this section, we test the predictions of the model. We first use a fixed-effects panel regression model to examine whether FoFs are constructed in line of our naive predictions. We then explore alternative specifications as well as perform various robustness tests.

4.1. Baseline Fixed-Effects Panel Regressions
We start by running a fixed-effects (FE) panel regression model as suggested by our theoretical discussion in Section 3. Equation (11) presents our estimates for \(i = 1, ..., 127 \) and for time \(t \) ranging from 2003Q1 to 2012Q4, where the statistical t-value is given in brackets: 11

\[
\log(\hat{\eta}_it) = \alpha_i + 0.473 \log(\text{AuM}_it), \quad R^2 = 0.85.
\]

For this FE model the estimated slope is highly significant (t-value of 12.843) and, at 0.473, comes close to our prediction of 0.5. A Wald test for whether \(\hat{b} \) is indeed insignificantly different from our prediction of 0.5 (with \(H_0 : b = 0.5 \)) results in a \(\chi^2 \) (1) -distributed test statistic of 0.54. The corresponding p-value of 0.45 does not allow us to reject the null hypothesis of \(b = 0.5 \).\(^{12}\) Indeed FoF managers seem to set \(n \propto \text{AuM} \). One issue with our analysis might be the large number of funds (76 out of 127) with less than 8 observations. Typically these funds also display high persistence (small variations) in both dependent and independent variables. Low within-fund variation will boost model fit (as fund specific intercepts are sufficient to reduce the funds contribution to regression errors) and increase \(R^2 \) in an unbalanced panel regression. At the same time the sampling error for the slope coefficient is considerably higher than for a standard pooled regression model. However this is unlikely the case if within fund variation is driven by a common rule across all FoFs. It is exactly the (artificially) small precision in the slope coefficient that might avoid the rejection of \(H_0 : b = \frac{1}{2} \). The values for \(\alpha_i \) fall between -6.21 and -4.74. Are they realistic? For example if \(\alpha = -6.21 \).

11 - Standard errors for significance tests in both regressions are corrected for cross-sectional heteroskedasticity by using a robust covariance matrix as in Greene (2008, p. 185). This correction was necessitated by a likelihood ratio test on the equality of variances across units (FoFs). That test rejected the null hypothesis of homogeneous variance with a p-value of 0.000, which is only philosophically different from zero.

12 - Including time effects does not change this result, although the estimated slope coefficient for the log of AuM does change marginally (to 0.602; t-value of 17.4). Yet testing against a slope of 0.5 results in a p-value of 0.97 – that is, making it even more difficult to reject our theoretical prediction. We also try omitting all funds with less than a year’s worth of observations; although the slope estimate then drops to 0.45, it remains close (economically) to our conjectured value of 0.50.
How much does our estimate vary when individual units (FoFs) are dropped from the panel data set? We repeat the estimation of (11) for a total of 127 times each time dropping (a different) one of the units (FoFs) from the sample. Figure 3 plots the variation in estimates. As in previous figures, all entries are sorted from left to right by the number of available fund observations. As expected, omitting funds with few observations (first column in Table 1) has little or no effect on the estimated coefficients. Variation increases as FoFs with more observations are sequentially dropped from the sample. Yet all coefficient estimates remain near the conjectured value of $b = 0.5$, and none becomes statistically different from 0.5. Hence none of the FoFs solely drives our results.

Finally, we check for the existence of influential data points capable of driving the results. For each observation in our FE panel regression, we calculate its Cook's distance (sum of squared differences between full-sample fitted values and fitted values from a model leaving one observation out, standardised by: the number of parameters times the model's mean squared error). This distance measure is plotted in Figure 4. To check for the collective effect of influence points we drop the 1% of observations with the highest distance measure from our sample and then repeat estimating (11):

$$\log(n_{it}) = a_i + 0.455 \log(AuM_{it}), \quad R^2 = 0.92.$$ (12)
4.2. Alternative Models and Robustness Tests

We next investigate whether alternative regression model specifications or functional forms fit better in with the data than with the fixed effects regression model. In line of our theoretical discussion, we show that the fixed effects regression model provides better fit in the data than the pooled regressions or alternative functional forms.

In order to validate our conjecture about the presence of individual effects in FoFs, we compare the FE regression with a pooled ordinary least-squares (OLS) regression. An absence of individual effects would imply that FoFs do not differ with respect to frictional costs, risk aversion (a reflection of different clienteles), or investment skill. The fit to this pooled OLS regression is given by

\[
\log(\hat{n}_{it}) = -3.293 + 0.345 \log(AuM_{it}), \quad R^2 = 0.44. \tag{13}
\]

The original data and the fitted values for both regressions are plotted in Figure 5. We perform an F-test of fixed effects versus pooling by comparing the residual sum of squares for both models. With a test statistic of 20.14, the p-value is close to zero; hence we can reject the pooled OLS model. Pooling all observations amounts to ignoring individual effects, which will bias the estimated slopes (0.473 for FE regression versus 0.345 for pooled OLS regression). This suggests that we should not ignore individual effects regarding the FoF specific the frictional costs, the risk aversion, or the investment skill.

Because our model suggests a linear regression in logs, we can use the MacKinnon et al. (1983) test to see whether a regression in logs does deliver better results than are obtained from a regression using untransformed data. In particular, we compare the log-linear model with a model using untransformed data, \(n_{it} = \alpha_i + \beta \cdot AuM_{it} + \nu_{it} \), by running two panel regressions of the respective forms.

13 - We also compare the fixed-effects model with a random-effects (RE) model by means of the Hausmann test. The \(\chi^2 \) -distributed statistic takes a value of 21.27, so we can reject the null hypothesis of a RE panel model with high confidence (p-value of 0.000). Our slope parameter for the RE model is 0.47, which is both numerically and statistically close to our conjectured value of 0.5. A Wald test with \(H_0 : \beta = 0.5 \) results in a \(\chi^2 \) (1) of 2.26 (i.e., a p-value of 0.129).
Each circle represents one pair of observations on log(AuM) and log(n) for our FoF data set. Fitted values for the FE panel regression \(\log(n_t) = \hat{\alpha} + \hat{\beta} \cdot \log(AuM_t) \) and the pooled OLS regression \(\log(n_t) = \hat{\alpha} + \hat{\beta} \cdot \log(AuM_t) \) are marked by solid black and gray lines, respectively.

Both equations add the difference in predictions (fitted values) with respect to the competing model to the model under the null hypothesis. If \(\gamma \) (resp., \(\delta \)) is significantly different from zero, then the model based on log data (resp., untransformed data) is rejected. Running both panel regressions yields \(\hat{\delta} = 11.01 \) with \(t(\hat{\delta}) = -4.36 \) and \(\hat{\gamma} = 0.00 \) with \(t(\hat{\gamma}) = 0.62 \). In short, we can reject the model using untransformed data but cannot reject the model using log-transformed data. Thus the functional form proposed in our theoretical model is in line with the empirical findings.

Finally, we need to show that our log-linear model is indeed linear; hence we must test for threshold effects. The idea here is that regression slopes might differ across regimes, where a regime is characterised by a (scalar) threshold value of a relevant “break” variable. What would justify the break points in our model? What circumstances would lead to these regimes? When assets under management grow, a FoF can increase the number of its target funds as frictional diversification costs become proportionally smaller. However, not enough target funds may exist that satisfy this FoF investor’s criteria. The FoF may be unconvinced of the target’s ability to deliver high (risk-adjusted) excess returns, or the FoF may face regulatory requirements that its current management is not trained to address. For these reasons and others, there is likely a limit to the number of funds actually eligible for inclusion in a FoF; that is, the number of viable additional holdings is not increasing in assets under management.

Following Hansen (1999), we estimate a threshold FE panel regression of the form

\[
\log(n_t) = \alpha_i + b \cdot \log(AuM_{it}) + \gamma \cdot \left(n_{it} - \exp\left(\log(n_{it}) \right) \right) + \epsilon_{it} \tag{14}
\]

\[
n_{it} = \alpha_i + \beta \cdot AuM_{it} + \delta \cdot \left(\log(n_{it}) - \log(\bar{n}_i) \right) + \nu_{it}. \tag{15}
\]

14 - A simple Ramsey reset test (including higher-order powers for the fitted values of the dependent variable and testing for their joint significance) does not indicate nonlinearity. In other words, the higher powers are neither individually nor collectively significant.
Here γ is the threshold of AuM_{it} that activates an indicator variable, D_{it}. To estimate the unknown break point, we perform a grid search. More precisely, we use 400 quintile values as candidates for γ while estimating equation (16) a total of 400 times. For each candidate value of γ we calculate an F-ratio of the form

$$F(\gamma) = \frac{\hat{\epsilon}' \hat{\epsilon} - \hat{\nu}' \hat{\nu}}{\hat{\nu}' \hat{\nu} \frac{1}{\text{#Obs.}}};$$

where $\hat{\epsilon}$ is the vector of residuals from (8), $\hat{\nu}$ is the vector of residuals from (16) for a particular γ, and #Obs. is the number of valid observations. A structural break in the proposed log-linear relationship is suspected for $\hat{\gamma} = \text{argmax}(F(\gamma)) = 17.84$. But when is $F(\hat{\gamma})$ statistically significant? We infer the critical value for (18) from the results of bootstrapping 5,000 times the residuals from our empirical estimate of (8) – that is, under the null of no threshold effects. We thereby create 5,000 new data sets $\log(n_{it}), \log(\text{AuM}_{it})$ by adding the bootstrapped residuals to our base model. Within each of these data sets we again perform the grid search just described to maximise the value of equation (18), thus creating new estimates of $F_1, F_2, ..., F_{5000}$. This procedure yields a distribution for (18), from which we can now calculate the correct p-value for F. In our example, $\hat{\gamma} = 17.84$ with a test statistic of $F = 33.84$. After 5,000 resamplings we finally obtain the distribution of our test statistic under the null of no breaks. The p-value for F is then 0.103; hence we cannot reject the null hypothesis (of no break) at the 90% confidence level. Thus we can conclude that log-linear model is indeed linear suggesting that FoFs seem to be capable to hire (fire) individual funds that (do not) fulfil their selection criteria when their total assets under management increase (decline).

5. Diversification and Performance

In this section, we investigate the relationship between the degree of diversification and FoF future performance. In previous sections, we show that on average \hat{b} is close to 0.5, i.e. FoFs on average behave as if they would employ a naive diversification model as above. However, we also report that mean group (across buckets with similar number of observations) estimated betas show some variation, i.e. some funds deviate from the optimal level of diversification. Therefore, we test whether these violations of diversification (according to a naive model) are related to deteriorating performance or more practically can be used to forecast future FoF returns. We conjecture that over-diversification (overly high costs, i.e. too low expected return per unit of risk or sloppy due diligence if costs are not spend) is as detrimental to performance as under-diversification (too high risk per unit of expected return). If underperformance (measured against various benchmark models) is related to over or under-diversification, investors can use this knowledge to better select FoFs. It also would offer additional support for (5). We propose for each individual FoF a diversification measure that classifies whether a FoF is (i) well diversified, (ii) under-diversified or (iii) over-diversified. The FoF is well diversified when $H_0 : b = 0.5$ is based on the two-sided test at a 10% significance level, while the FoF is under-diversified (over-diversified) when $\hat{\nu} < 1/2$ ($\hat{\nu} > 1/2$) based on the one-sided test at a 5% significance level. For every FoF, we estimate its diversification measure by using equation (8). Given that our time-series are relatively short, the use of the t-test instead of point estimates seems appropriate. The t-test statistic is a pivotal statistic with better sampling properties and, it should provide a correction for spurious outliers by normalising the estimated parameter by the estimated variance of the parameter estimate.

We first employ both nonparametric cross-sectional regressions and then turn to multivariate regressions. Nonparametric regressions are particularly well suited for our purposes given that we
aim to investigate whether there is a nonlinear relationship between the degree of diversification and the FoFs’ performance, while a standard portfolio sort methodology allows us to gauge economic significance of our results. Given that portfolio sorts and nonparametric regression work well for one variable, we use multivariate regressions to control for the role of other variables that has been documented to explain FoF performance.

To ensure that our performance evaluation results are robust, we use various benchmark models. Motivated by Jagannathan, Malakhov and Novikov (2010), we use the equal-weighted FoF portfolio as a first benchmark portfolio. Such a benchmark portfolio measures how hedge funds perform relative to other funds, but do not say anything about risk-adjusted performance. Therefore, we use both the Carhart’s (1997) four-factor model and the Fung and Hsieh (2004) seven-factor model. Carhart’s contains four risk factors: the excess returns on value-weighted mark index (MARKET); the size factor (SIZE); the value factor (HML); and the momentum factor (UMD). The Fung and Hsieh (2004) model contains seven risk factors: the excess return of the S&P 500 index (SP); the return of the Russell 2000 index minus the return of the S&P 500 index (SIZE); the excess return of ten-year Treasuries (CGS10); the return of Moody’s Baa-rated corporate bonds minus ten-year Treasuries (CREDSPR); and the excess returns of look-back straddles on bonds (PTFSBD), currencies (PTFSFX); and commodities (PTFSCOM). Finally, since Brown, Gregoriou and Pascalau (2012) show that some FoFs are exposed to left-tail risk, we use two alternative specifications including the volatility (VOL) and jump (JUMP) factors proposed by Cremers, Halling and Weinbaum (2015) and the equity option factors (OTM_CALL and OTM_PUT) developed by Agarwal and Naik (2004).

5.1. Nonparametric Regression and Diversification

We start by running nonparametric cross-sectional regressions using a robust version of local regression proposed by Cleveland (1979) and further developed by Cleveland and Devlin (1988). In doing so, we fit a locally-weighted polynomial regression model:

\[Performance_i = f(Diversification_i) + \xi_i, \]

where \(Performance_i \) is the \(t \)-statistic of alpha (intercept) obtained from the relative benchmark regression with respect to the equal-weight FoF index, the \(Diversification_i \) is defined as the \(t \)-statistic of \(\hat{b} \) estimated using equation (8) for every FoF \(i \) and \(f(\cdot) \) represents the locally-weighted polynomial regression model. At each point in the data set a low-degree polynomial is fitted to a subset of the data, with explanatory variable values near the point whose response is being estimated. The fitted values are computed by using the nearest neighbor routine and robust locally weighted regression of degree 1 with the tricube weight function.

Figure 6 presents fitted values for locally-weighted polynomial regression results when the relative performance is regressed against the \(Diversification \). From the scatterplot, we can observe that the FoFs diversifying along the lines of our simple model deliver better performance than the FoFs that hold only a few or a high number of individual hedge funds (relative to their AuM). The nonparametric regression also shows that the fitted value for alpha is highest where the \(Diversification \), is close to zero, i.e. close to the null hypothesis. In summary, our results suggest that deviations from optimal diversification are penalised and there is – as conjectured – a nonlinear relationship between the diversification and relative performance.
5.2. Portfolio Sorts and Diversification

To measure the potential economic value of our diversification measure, we use a standard portfolio sorting methodology. On each quarter from 2004Q3 to 2012Q2, we sort funds into three portfolios, based on the diversification measure, and track the equally-weighted return produced by the portfolios in the following quarter. To assess the performance of the diversification measure sorted portfolios, we first calculate summary statistics of their quarterly raw returns. Such statistics have the benefit of being independent of the benchmark model. As straightforward statistics, we calculate the mean return, volatility and Sharpe ratio. For each mean return and Sharpe ratio, we test whether the difference between an equal-weight portfolio of optimally diversified FoFs and an equal-weight portfolio of FoFs that under-diversify (over-diversify) is statistically significant. Panel A of Table 2 reports that both mean return and Sharpe ratio are the highest for the optimally diversified portfolio, while the volatilities are quite similar across portfolios. Statistical tests show that mean spreads are significantly higher for optimally diversifying FoFs at the 1% level, while Sharpe ratio differences are significant at least at the 10% level. The relative performance results reported in Panel B support these findings. We find that both alphas and information ratios with respect to equal-weighted FoF portfolio are significantly higher for FoFs that diversify optimally. It also look like that the FoFs which under-diversify deliver the lowest performance among these three groups.

We next turn to the performance of FoFs by using both the Carhart’s (1997) four-factor model and Fung-Hsieh (2004) seven-factor model. Panel C shows that both the Carhart’s alphas and information ratios are the highest for FoFs that diversify optimally. We do find that all for all three portfolios that FoFs are significantly exposed to value-weighted market portfolio, while other factors remains statistically insignificant. In addition, we can see that the magnitudes of risk

19 - Three portfolios that contain either (i) optimally diversified ($\hat{b} = 1/2$), (ii) under-diversified ($\hat{b} < 1/2$) or (iii) over-diversified FoFs ($\hat{b} > 1/2$). FoF is optimally diversified when $\hat{b} = 1/2$ using two-sided test at a 10% significance level. The FoF is under-diversified (over-diversified) when $\hat{b} < 1/2$ ($\hat{b} > 1/2$) using one-sided test at a 5% significance level. \hat{b} is estimated using an expanded window.

20 - We employ the Ledoit and Wolf (2008) approach to test difference between two Sharpe ratios.
loadings are quite similar across portfolios. As a complementary assessment of the performance of the sorted portfolios, we use the Fung and Hsieh (2004) model. Panel D shows that the alphas and information ratios are significantly higher for the portfolio containing the FoFs that diversify optimally. Again, the FoFs that under-diversify deliver the lowest performance. We do not find any significant difference between risk loadings among the three groups.

Given that Brown, Gregoriou and Pascalau (2012) show that FoFs are exposed to tail risk, we investigate issue by two additional specifications. First, using the both aggregate jump (JUMP) and volatility (VOL) risk factors proposed by Cremers, Halling and Weisbaum (2015). They show that stocks with high sensitivities to jump and volatility risk have low expected returns. Second, using the two option-writing factors developed by Agarwal and Naik (2004). Panel E and Panel D show that our results hold even after adding these factors. This suggests that our findings may not be driven by left-tail risk.

To investigate whether our portfolio sort results are consistent over time, Figure 2 plots the cumulative performance results for three diversification groups. Panel A plots cumulative excess returns, while in Panel B cumulative excess returns exceed to equal-weighted FoF portfolio. Panel C and D plot the cumulative abnormal returns with respect to Carhart (1997) factors and Fung-Hsieh (2004) factors. Cumulative performance results are striking. These four panels show that FoFs that diversify along the simple predictions of model outperform the FoFs that either under- or over-diversify. Cumulative performance is consistently higher for them no matter whether we use raw returns, relative returns or risk-adjusted returns in terms of Carhart (1997) or Fung and Hsieh (2004) model.

Table 2: Portfolio Sorts and Diversification

This table present the out-of-sample results for three portfolios that contain either (i) optimally diversified ($\hat{\beta} = 1/2$), (ii) underdiversified ($\hat{\beta} < 1/2$) or (iii) overdiversified FoFs ($\hat{\beta} > 1/2$). FoF is optimally diversified when $\hat{\beta} = 1/2$ using two-sided test at a 10% significance level. The FoF is underdiversified (overdiversified) when $\hat{\beta} < 1/2 (\hat{\beta} > 1/2)$ using one-sided test at a 5% significance level. $\hat{\beta}$ is estimated using an expanded window. “Mean” is an annualised mean excess return for a particular portfolio. “Std” is an annualised standard deviation. “Sharpe” is an annualised Sharpe ratio. “Alpha” is an annualised intercept obtained from the respective benchmark model. “TE” is an annualised tracking error defined as a standard deviation of residual term. “IR” is an annualised information ratio defined as a respective benchmark model intercept divided by the standard deviation of residual term. The Ledoit and Wolf (2008) approach is used in Sharpe and IR difference tests. T-statistics of parameter estimates are presented in parenthesis.

<table>
<thead>
<tr>
<th>EW Portfolios</th>
<th>Panel A: Excess Returns</th>
<th>Panel B: Relative Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (Std)</td>
<td>Alpha (TE)</td>
</tr>
<tr>
<td>Underdiversified</td>
<td>1.932 (0.65)</td>
<td>-1.249 (-3.48)</td>
</tr>
<tr>
<td>Optimal</td>
<td>5.835 (1.80)</td>
<td>2.667 (4.27)</td>
</tr>
<tr>
<td>Overdiversified</td>
<td>3.250 (1.15)</td>
<td>0.473 (0.73)</td>
</tr>
<tr>
<td>Difference tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal - Underdiversified</td>
<td>3.903 (4.02)</td>
<td>3.916 (4.73)</td>
</tr>
<tr>
<td>Optimal - Overdiversified</td>
<td>2.586 (2.76)</td>
<td>2.194 (1.72)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EW Portfolios</th>
<th>Panel C: Carhart Adjusted-Returns</th>
<th>Panel D: Fung-Hsieh Adjusted-Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alpha (TE)</td>
<td>IR (IR)</td>
</tr>
<tr>
<td>Underdiversified</td>
<td>0.545 (0.40)</td>
<td>0.144 (5.35)</td>
</tr>
<tr>
<td>Optimal</td>
<td>4.294 (4.24)</td>
<td>1.158 (4.18)</td>
</tr>
<tr>
<td>Overdiversified</td>
<td>1.964 (1.45)</td>
<td>0.565 (4.72)</td>
</tr>
<tr>
<td>Difference tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal - Underdiversified</td>
<td>3.749 (5.61)</td>
<td>-0.023 (-0.94)</td>
</tr>
<tr>
<td>Optimal - Overdiversified</td>
<td>2.329 (2.47)</td>
<td>0.051 (0.41)</td>
</tr>
</tbody>
</table>
These figures present the out-of-sample cumulative (Panel A) excess returns, (Panel B) FoF index-adjusted returns, (Panel C) Carhart-adjusted returns, and (Panel D) Fung-Hsieh-adjusted returns for three portfolios that contain (i) optimally diversified, (ii) underdiversified or (iii) overdiversified FoFs. FoF is optimally diversified when $\hat{b} = 1/2$ using two-sided test at a 10% significance level. The FoF is underdiversified (overdiversified) when $\hat{b} < 1/2$ ($\hat{b} > 1/2$) using one-sided test at a 5% significance level. \hat{b} is estimated using an expanded window.

Figure 7: Out-of-sample performance and Diversification

Panel A: Excess Returns

Panel B: FoF Index-Adjusted Returns

Panel C: Carhart-Adjusted Returns

Panel D: Fung-Hsieh Adjusted Returns
5.3. Multivariate Analysis and Diversification

We next turn to the multivariate analysis of diversification and future FoF performance. For this purpose, we run a set of panel regressions to explore whether the variables documented by existing literature are more important variables in explaining the FoFs’ performance than the proposed diversification measure. Given the quarterly frequency of our data, the most convenient way to examine the issue raised above is to run the following panel regression:

\[
\text{Return}_{i,t} = \gamma_0 + \gamma_1 \text{NonOptimal}_{i,t-1} + \gamma_2 \log(\text{AUM})_{i,t-1} + \gamma_3 \log(n)_{i,t-1} + \gamma_4 \text{Problem}_{i,t-1} + \gamma_5 \text{Flow}_{i,t-1}
\]

where \(\text{Return}_{i,t} \) is the FoF’s quarterly relative return defined as the excess return over the equal-weighted FoF portfolio. To obtain the diversification measure on a quarterly basis, we create a dummy variable (\(\text{NonOptimal}_{i,t-1} \)) from our time-series of diversification measures (estimated from OLS using an expanding data window). This dummy variable is defined as the statistically significant non-optimal diversification at the 10% level.\(^2\) Thus, in this regression, the negative coefficient for \(\text{NonOptimal}_{i,t-1} \) indicates a higher performance for FoFs that diversify along the lines of our simple model. We include quarterly dummies (not tabulated), and cluster standard errors by FoF.

Table 3 shows a robust and a negative relationship between \(\text{NonOptimal}_{i,t-1} \) and FoF performance even once we add a set of control variables. It provides evidence that the FoFs that do not diversify along the simple model deliver 2.72%–3.40% lower relative returns per annum compared to the FoFs whose behaviour is consistent with the model taking frictional costs into account.

To examine the robustness of the diversification and performance result, we base our control variables to the previous literature on both hedge fund performance and mutual fund performance. First, we include the logarithm of the FoF’s size (\(\log(\text{AUM})_{i,t-1} \)) into the regression model. Brown, Frazier, and Liang (2008a) argue that only relatively large FoFs can absorb fixed costs that are required for setting up an effective due diligence process. Table 4 shows that the FoF’s size does not drive our results. Although we often find a significant and positive relation between (\(\log(\text{AUM})_{i,t-1} \)) and FoF relative performance, the coefficient for \(\text{NonOptimal}_{i,t-1} \) remains negative and significant.

Second, we add \(\log(n)_{i,t-1} \) into the regression model due to the fact that Pollet and Wilson (2008) document evidence suggesting that better diversification measured by a larger number of stocks is associated with superior performance especially for small-cap mutual funds. In contrast, we find some evidence that a lower number of underlying hedge funds is associated with greater relative performance. Importantly, adding \(\log(n)_{i,t-1} \) does not impact the significance of our key variable \(\text{NonOptimal}_{i,t-1} \).

We next include an operational risk measure (\(\text{Problem}_{i,t-1} \)) – defined as a fraction of “problem” funds that a FoF holds during the quarter – into our regression model.\(^2\) The rationale stems from a series of papers done by Brown, Goetzmann, Liang and Schwarz (2008b, 2009, 2012). They document that hedge funds with a high operational risk tend to deliver lower performance than their peers. Even after controlling for the impact of operational risk on FoFs’ relative performance, we find that our results hold.

Finally, we add the FoF’s quarterly capital flow (\(\text{Flow}_{i,t-1} \)) into the regression model. Fung, Hsieh, Naik and Ramadorai (2008) find that the capital inflow attenuates the ability of good performing funds to deliver superior future performance. After adding flow, we still find a negative and significant coefficient for \(\text{NonOptimal}_{i,t-1} \) suggesting our finding is robust.

\(^2\) Our results are quantitatively similar for the significance levels 1% and 5% as well as full-sample diversification measures. We also find quantitatively similar results using the Fama and MacBeth regressions (1973). These results are available upon a request.

\(^2\) We define the operational risk measure (\(\text{Problem}_{i,t-1} \)) as a fraction of “problem” funds that a FoF holds during the quarter following Brown, Goetzmann, Liang and Schwarz (2008b, 2009). We classify as “problem” funds those that answered “yes” to at least one question in Item 11 of ADV filing. Item 11 identifies all problems that the management or the related advisory affiliates have, including felonies, investment-related misdemeanors of any agency, SEC, CFTC, or self-regulatory issues, regulatory disciplinary action as well as civil lawsuits. We that 16% of individual hedge funds held by FoFs are classified as problem funds.
To summarise, our multivariate evidence suggests that there is a robust nonlinear relationship between the proposed diversification measure and the FoF performance. Indeed, the FoFs that set their diversification policy close to \(n^2 \approx \text{aum.} \), i.e. diversify more closely to our simple model tend to deliver relatively higher performance than the FoFs that hold either a few or a high number of individual hedge funds relative to the FoF’s size.

6. Conclusion

We employ a model of naive diversification with frictional diversification costs to motivate a positively sloped log-linear relation between a fund of fund’s number of holdings and the value of its assets under management. When applied to a previously unavailable data set, our model produces evidence that FoFs diversify in line with this naive advice. In fact, we find a log-linear with a regression coefficient of close to 0.5. Diversification is no free lunch but only available to those who can afford it. No indications of non-linearities or threshold effects were evident, and our results do not change materially when individual data points or individual FoFs are dropped from the sample. Finally we provided evidence that those FoFs following our simple model’s predictions more closely are able to provide better future performance.

Table 3: Multivariate Analysis and Diversification

This table reports results for the multivariate regressions, where the FoFs’ relative returns are explained by the quarter lagged diversification measure and a set of quarter lagged control variables. The variable “Relative return” is the FoF’s quarterly relative return defined as the excess return over the equal-weighted FoF portfolio. The variable “Non-optimal diversification” is an indicator variable getting one if the FoF is underdiversified (overdiversified) when \(\hat{h} < 1/2 \) (\(\hat{h} > 1/2 \)) using one-sided test at a 5% significance level, and otherwise zero. “Log(AuM)” and “Log(n)” are the logarithm of assets under management and number of funds. “Operational Risk” is the fraction of problem funds that the FoF hold. Problem funds are classified using an indicator variable that takes on a value of one if the fund denotes any action brought by a regulator or the courts in Question 11 of its ADV filing, and zero otherwise. “Flow” is capital flows in percentiles. “Time FEs?” refers to calendar fixed effects. “Clustered SEs?” refers to the standard error that are clustered at FoF level.

<table>
<thead>
<tr>
<th>Relative return</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-optimal</td>
<td>-0.0085</td>
<td>-0.0075</td>
<td>-0.0072</td>
<td>-0.0068</td>
</tr>
<tr>
<td>diversification</td>
<td>(-2.72)</td>
<td>(-3.56)</td>
<td>(-3.28)</td>
<td>(-2.85)</td>
</tr>
<tr>
<td>log(AuM)</td>
<td>0.0012</td>
<td>0.0014</td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.54)</td>
<td>(1.76)</td>
<td>(1.84)</td>
<td></td>
</tr>
<tr>
<td>log(n)</td>
<td>-0.0094</td>
<td>-0.0091</td>
<td>-0.0113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-3.40)</td>
<td>(-2.79)</td>
<td>(-2.73)</td>
<td></td>
</tr>
<tr>
<td>Operational Risk</td>
<td></td>
<td>0.0071</td>
<td>0.0197</td>
<td></td>
</tr>
<tr>
<td>(Problem)</td>
<td></td>
<td>(0.69)</td>
<td>(1.78)</td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
<td>0.0152</td>
<td>(1.81)</td>
</tr>
<tr>
<td>Time FEs?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Clustered SEs?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Appendix

A. Data Gathering Process

We start our data construction by downloading all SEC EDGAR master filing indices from 1993 to 2012. Each SEC filer is identified by its central index key (CIK). For each CIK appearing in the master indices, we download its most recently filed NSAR filing (either NSAR-A or NSAR-B). This yields 3,032 NSARA filings and 2,328 NSAR-B filings, for a total of 5,360 NSAR filings. Each CIK is classified as a closed-end fund if the answer to question 76 of its most recently filed NSAR form is zero. This yields a list of 4,521 CIKs of closed-end funds.
For each of these CIKs, we download all their annual reports (N-CSR, available from filing quarter 2003Q1), semi-annual reports (N-CSRS, available from filing quarter 2003Q3) and quarterly reports (NQ, available from filing quarter 2004Q3). The intersection of these report types is available from filing quarter 2004Q3. These reports have a similar structure, so we use a single automated program to parse the fund holdings from each report. For each holding, we parse the name of the asset held, its original cost, and its current market value.

To narrow the sample from closed-end funds down to funds of hedge funds, we restrict the sample to funds whose name indicates that the fund is 1) a fund of funds, 2) a fund of hedge funds, 3) a limited liability company (LLC), or 4) a limited partnership (LP). This leaves us with 202 CIKs. Finally, we manually inspect the holdings of these funds, and remove funds that do not primarily hold hedge funds. This leaves us with 127 distinct FoFs that have invested in 1,751 unique target funds. 776 of these funds we were able to match by name to a consolidated version of commercial hedge fund databases (BarclayHedge, EurekaHedge, HFR, Lipper TASS and Morningstar) created by following the steps described in Joenväärä, Kosowski and Tolonen (2014a).

References

• Amin G. and H. Kat (2002), Portfolios of Hedge Funds: What Investors Really Invest in, Working Paper, ISMA University of Reading,
• Brown S., G.N. Gregoriou and R. Pascalau (2012), Diversification in Funds of Hedge Funds: Is It

Founded in 1906, EDHEC Business School offers management education at undergraduate, graduate, post-graduate and executive levels. Holding the AACSB, AMBA and EQUIS accreditations and regularly ranked among Europe’s leading institutions, EDHEC Business School delivers degree courses to over 6,000 students from the world over and trains 5,500 professionals yearly through executive courses and research events. The School’s ‘Research for Business’ policy focuses on issues that correspond to genuine industry and community expectations.

Established in 2001, EDHEC-Risk Institute has become the premier academic centre for industry-relevant financial research. In partnership with large financial institutions, its team of ninety permanent professors, engineers, and support staff, and forty-eight research associates and affiliate professors, implements six research programmes and sixteen research chairs and strategic research projects focusing on asset allocation and risk management. EDHEC-Risk Institute also has highly significant executive education activities for professionals.

In 2012, EDHEC-Risk Institute signed two strategic partnership agreements with the Operations Research and Financial Engineering department of Princeton University to set up a joint research programme in the area of risk and investment management, and with Yale School of Management to set up joint certified executive training courses in North America and Europe in the area of investment management.

In 2012, EDHEC-Risk Institute set up ERI Scientific Beta, which is an initiative that is aimed at transferring the results of its equity research to professionals in the form of smart beta indices.

Copyright © 2016 EDHEC-Risk Institute

For more information, please contact: Carolyn Essid on +33 493 187 824 or by e-mail to: carolyn.essid@edhec-risk.com

EDHEC-Risk Institute
393 promenade des Anglais
BP 3116 - 06202 Nice Cedex 3
France
Tel: +33 (0)4 93 18 78 24

EDHEC Risk Institute—Asia
1 George Street #07-02
Singapore 049145
Tel: +65 6438 0030

EDHEC Risk Institute—Europe
10 Fleet Place, Ludgate
London EC4M 7RB
United Kingdom
Tel: +44 207 871 6740

EDHEC Risk Institute—France
16-18 rue du 4 septembre
75002 Paris
France
Tel: +33 (0)1 53 32 76 30

www.edhec-risk.com